terconversions. Whereas $\mathbf{5 b}$ and $\mathbf{6 b}$ were stable in refluxing acetonitrile, a 44:56 equilibrium was established from both sides in benzonitrile ($E_{\mathrm{T}} 42.0$) at $139^{\circ} \mathrm{C}$ with $k_{\text {cis }}+k_{\text {trans }}=2.010^{-5}$ s^{-1}. Isomerization was 5 times slower in the less polar 0 -dichlorobenzene (E_{T} 38.1). A 41:59 equilibrium was attained in 2 h at $135{ }^{\circ} \mathrm{C}$ in etheral $2.9 \mathrm{M} \mathrm{LiClO}_{4}$, a medium resembling a salt melt. ${ }^{14}$ Only in this medium was a slow cis,trans isomerization of $\mathbf{5 a}$ observed. All this is in harmony with cis, trans isomerization via rotation of the ring-opened zwitterions 3 and 4. The rate difference between series a and \mathbf{b} parallels solvolysis rates of the corresponding alkyl chlorides. ${ }^{15}$

Cycloaddition of 2a to dimethyl fumarate in THF was stereospecific and afforded 99% of 7 (${ }^{1} \mathrm{H}$ NMR analysis); the $500-\mathrm{MHz}$ spectrum did not reveal the methyl signals of 8 $(<0.03 \%)$. In contrast, reaction of 1 a with dimethyl maleate ${ }^{16}$

(3.5 equiv, neat, $8 \mathrm{~h} 40^{\circ} \mathrm{C}$) furnished 82% of 7 and $8,1.1: 98.9$, accompanied by the thiirane 9.8 The cis adduct 8 -alone or in presence of decomposing $1 a^{17}$ - did not noticeably isomerize at $40^{\circ} \mathrm{C}$.

We interpret this result as minor participation of the zwitterionic pathway in the reaction of 2 a with maleic ester and no involvement in the fumaric ester case. Why is this two-step reaction less favored than for dimethyl dicyanofumarate? (1) The π-MO energies of the latter are lower than those of ethylenedicarboxylic esters. (2) Steric shielding of one terminus of the thiocarbonyl ylide $\mathbf{2}$ impairs concerted addition of fumaric and maleic esters less than that of the tetrasubstituted ethylene. The two-step mechanism, however, is less affected. The higher activity of dimethyl fumarate vs. maleate in concerted additions (early transition state) is well understood. ${ }^{1}$ Rapid concerted addition of 2a to dimethyl fumarate prevents occurrence of stereochemical leakage.

Is it conceivable that all 1,3-dipolar cycloadditions take the two-step course and that $k_{\text {rot }} / k_{\text {cycl }}$ is too small as a rule to allow detection of the nonstereospecific portion? A retention of $>99.997 \%$ was found for the addition of diazomethane to methyl tiglate; ${ }^{18} \Delta G_{\text {rot }}-\Delta G_{\text {cycl }}{ }^{*}>6.2 \mathrm{kcal} \mathrm{mol}^{-1}$ is hard to rationalize for an intermediate.

The ratio $k_{\text {rol }} / k_{\text {cycl }}$ for the related tetramethylene species decreases with terminal substitution: 12 for cis- and trans-10, R $=\mathrm{H} ;{ }^{19}$ large for $\mathbf{1 0}, \mathrm{R}=\mathrm{F} ;{ }^{20} 1.3$ and 0.6 for cis- and trars-11, $\mathrm{R}=\mathrm{H} ;{ }^{21} 4.3$ and 2.0 for cis- and trans-11, $\mathrm{R}=\mathrm{F} ;{ }^{22}$ and <0.02

[^0]
for 12. ${ }^{23}$ Thus, the deuterium-labeled methylene rotor offers the highest chance to bring to light an intermediate in cycloadditions. This was why Houk, Firestone, et al. ${ }^{24}$ tested addition of 4 nitrobenzonitrile oxide to cis- and trans-dideuterioethylene; $\geqslant 98 \%$ retention was observed! In contrast, the nonstereospecific 1,3cycloadditions described here concern terminally persubstituted intermediates 3 and 4. ${ }^{25}$ The conclusion: normal stereospecific 1,3-dipolar cycloadditions follow a fundamentally different mechanism involving no intermediates.

Acknowledgment. G.M. expresses his gratitude to the A. von Humboldt Foundation for a fellowship. We thank Professor J. Sonnenbichler, Max Planck Institute of Biochemistry, Martinsried, for measuring $500-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra. We are grateful to the Deutsche Forschungsgemeinschaft and to the Fonds der Chemischen Industrie for support.
(23) Bartlett, P. D.; Porter, N. A. J. Am. Chem. Soc. 1968, 90, 5317.
(24) Houk, K. N.; Firestone, R. A.; Munchausen, L. L.; Mueller, P. H.; Arison, B. H.; Garcia, L. A. J. Am. Chem. Soc. 1985, 107, 7227.
(25) Further convincing evidence comes from trapping reactions of the zwitterionic intermediate from 2a and tetracyanoethylene: Huisgen, R.; Mloston, G.; Langhals, E. J. Org. Chem., in press.

Carbon-Hydrogen Bond Activation through a Binuclear C-H Bond Complex

Joon Won Park, Peter B. Mackenzie, ${ }^{\dagger}$ William P. Schaefer, and Robert H. Grubbs*

Contribution No. 7412, Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125

Received May 12, 1986

There is increasing interest in agostic interactions between a metal and a carbon-hydrogen bond. ${ }^{1}$ This interaction is thought to be especially important in the carbon-hydrogen bond activation process (eq 1). ${ }^{2}$ Systems that show such interactions are useful

as models to provide characteristic reaction types and characteristic spectroscopic features. We were interested in the possibility of such interactions for heteronuclear systems which could be thought of as the simplest models for mixed-metal heterogeneous catalysts ${ }^{2}$ and systems that show strong metal-support interactions.

We recently developed an efficient route to heteronuclear μ methylene complexes $\mathrm{Cp}_{2} \mathrm{TiML}_{n}\left(\mu-\mathrm{CH}_{2}\right)(\mu-\mathrm{Cl}){ }^{3}$ The μ-chloride

[^1]

Figure 1. ORTEP diagram of $\mathrm{Cp}_{2} \mathrm{TiRh}(\mathrm{COD})\left(\mu-\mathrm{CH}_{2}\right)\left(\mu-\mathrm{CH}_{3}\right)$. The ellipsoids are drawn at the 50% probability level except for the hydrogen atoms. The hydrogen atoms of the cyclopentadienyl rings and COD are omitted for clarity. Selected bond distances (\AA): Ti-CB1, 2.147 (5); Ti-CB2, 2.294 (6); Rh-CB1, 2.094 (5); Rh-CB2, 2.110 (6); CB1CB1H, 0.91 (3); CB2-CB2B, 0.92 (5); CB2-CB2A, 0.98 (4); Rh-Ti, 2.835 (1). Selected bond angles (deg): Ti-CB1-Rh, 83.9 (2); Ti-CB2-Rh, 80.0 (2); CB1-Ti-CB2, 94.4 (2); CB1-Rh-CB2, 101.7 (2); $\mathrm{Ti}-\mathrm{CB} 1-\mathrm{CB} 1 \mathrm{H}, 123$ (2); CB1H-CB1-CB1H, 108 (3); CB1H-CB1-Rh, 105 (2); Ti-CB2-CB2B, 61 (3); Ti-CB2-CB2A, 124 (3); CB2B-CB2CB2A, 102 (4); CB2A-CB2-CB2A, 110 (4); Rh-CB2-CB2A, 100 (3); Rh-CB2-CB2B, 141 (3).
functionality of this family of compounds allows the introduction of wide variety of other bridging groups via substitution. Herein we report the synthesis and characterization of the novel compound 3 , obtained by treating the μ-chloride complex 2 with methyllithium (eq 2, 3). A unique feature of this compound is the

bridging methyl group which forms a three-center 2-electron agostic bond with the titanium center. Crystallographic and spectroscopic studies of this molecule have been carried out to fully characterize the static and dynamic behavior of this agostic interaction.

Titanacycle 1 reacts rapidly at room temperature with [Rh(COD) Cl$]_{2}$ in toluene to give the bridging methylene complex 2 quantitatively. ${ }^{3.4}$ Treatment of 2 with 2 equiv of methyllithium at room temperature yields the $\mu-\mathrm{CH}_{3}$ complex 3 . The bridging methyl complex is formed in 90% yield as determined by ${ }^{1} \mathrm{H}$ NMR ${ }^{5}$ but could only be isolated in 10% yield due to difficulties encountered in purifying it. Multiple recrystallization yielded orange-yellow crystals of $\mathbf{3}$ suitable for an X-ray structure determination. ${ }^{6.7}$

[^2]As shown in Figure 1, carbon atom CB2 and hydrogen atom CB2B form an agostic interaction with the titanium atom. For the bridging methyl group, the Ti-H bond distance is 2.02 (5) \AA and the $\mathrm{Ti}-\mathrm{C}$ bond distance is 2.294 (6) \AA. These distances can be compared to those in Green's compound $\mathrm{Ti}(\mathrm{dmpe})\left({\mathrm{Et}) \mathrm{Cl}_{3},{ }^{8},}^{8}\right.$ for which they are 2.29 and $2.52 \AA$, respectively. In the bridging methylene group the hydrogen CB1H-carbon CB1 bond is tilted toward the rhodium atom and the $\mathrm{Ti}-\mathrm{CB} 1-\mathrm{CB} 1 \mathrm{H}$ bond angle is 123 (2) ${ }^{\circ}$. Although the metal-metal bond distance of 2.835 (1) \AA is in the range of a metal-metal bond, we are not certain that one is present.
At room temperature the $\mu-\mathrm{CH}_{3}$ group shows a broad resonance at -3.13 ppm in the ${ }^{1} \mathrm{H}$ NMR spectrum. When cooled to -90 ${ }^{\circ} \mathrm{C}$, this resonance is replaced by two resonances at 1.28 ppm (doublet) and -12.15 ppm (triplet, $J=12.8 \mathrm{~Hz}$). The observed coalescence temperature is $-40^{\circ} \mathrm{C}$ at 90 MHz . The calculated ΔG^{\ddagger} for the rotation through rhodium carbon CB2 bond is +9.8 kcal/mol. ${ }^{9}$

In the ${ }^{13} \mathrm{C}$ NMR (${ }^{1} \mathrm{H}$ coupled with NOE) at room temperature, the $\mu-\mathrm{CH}_{3}$ resonance is at 49.7 ppm (doublet of quartet, $J_{\mathrm{CH}}=$ $114, J_{\mathrm{CRh}}=29 \mathrm{~Hz}$). The carbon rhodium coupling constant for the $\mu-\mathrm{CH}_{3}$ group is ma.kedly different from values for [Rh (COD) $\left.\left(\mu-\mathrm{CH}_{3}\right)\right]_{2}(9.5 \mathrm{~Hz}),{ }^{10}$ which implies that the bonding character of the methyl group is considerably different. We prepared $51 \%{ }^{13} \mathrm{C}$-enriched 3 to measure the individual CH coupling constants. At $-92^{\circ} \mathrm{C}$, the $\mu-\mathrm{CH}_{3}$ resonance was observed at 51.1 ppm . The coupling constant for the bridging proton (${ }^{b} J_{\mathrm{CH}}$) is 87.7 Hz ; for the terminal proton, this value (${ }^{(} J_{\mathrm{CH}}$) is 126.7 Hz . As expected, we found an abnormally low coupling constant for the agostic hydrogen atom. To our knowledge, this is the first case where the exact CH coupling constant of an agostic bond in a fluxional system has been determined directly.

Agostic hydrogens also exhibit characteristic IR absorbance bands between ca. 2700 and $2350 \mathrm{~cm}^{-1}$. Compound 3 displays a weak absorbance at $2460 \mathrm{~cm}^{-1}$. Upon deuteration of the methyl group, 3- d_{3} shows new absorbances at 2196,2110 , and $1854 \mathrm{~cm}^{-1}$. The first two absorbances are assigned to the stretching mode of the nonagostic CD bonds and the latter absorbance to stretching mode of the agostic CD bond.

The existence of both a μ-methylene and a μ-methyl ligand in this molecule raised the intriguing possibility of a hydrogen-transfer reaction between the bridging alkyl ligands. Indeed, when the ${ }^{13} \mathrm{C}$-labeled complex 3 a was allowed to stand at room temperature for several months, the ${ }^{13} \mathrm{C}$ label was incorporated into the μ methylene position ($t_{1 / 2} \approx 5$ months at room temperature and \approx 15 days at $65^{\circ} \mathrm{C}$). The role of the agostic interaction in this

hydrogen-transfer reaction is not yet clear. However, this reaction represents a well-characterized example of an alkyl group with an agostic hydrogen interaction which is subsequently activated by the metal center.

We have evidence of similar chemistry in the Ir, Pt analogues of 3 . ${ }^{3}$ We anticipate that these related systems will define the general characteristics of heteronuclear agostic CH bonds.

Acknowledgment. We acknowledge the financial support of the Department of Energy, the Exxon Educational Foundation
(7) Crystals of 3 are orthorhombic, space group $P b c m$ (No. 57), with $a=$ 8.219 (1) $\AA, b=16.330$ (2) $\AA, c=12.613$ (2) $\AA, Z=4$. The structure was refined to $R=0.025$ for 1274 reflections; the goodness of fit is 1.98 for 1560 data and 134 parameters.
(8) Dawoodi, Z.; Green, M. L. H.; Mtetwa, V. S. B.; Prout, K. J. Chem. Soc., Chem. Commun. 1982, 802.
(9) Martin, M. L.; Martin, G. J.; Delpuech, J. J. Praclical NMR Spectroscopy; Heyden \& Sons: London, 1980; p 339. $\Delta G^{\ddagger}=[45.45-1.98 \mathrm{log}$ ($\left.\left.\Delta \nu / T_{\mathrm{C}}\right)\right] T_{\mathrm{C}}, \Delta \nu$ in $\mathrm{Hz}, T_{\mathrm{C}}$ in absolute temperature. This activation energy can be thought of as the minimum agostic bond energy.
(10) Schmidt, G. F.; Muetterties, E. L.; Beno, M. A.: Williams, J. M. Proc. Nall. Acad. Sci. U.S.A. 1981, 78, 1318.
(R.J.C., W.P.S.), and a N.S.E.R.C. and N.A.T.O. Postdoctoral Fellowship for P.B.M. We thank Dr. Robert Coots for discussions about X-ray crystallography and the NSF for Grant CHE8219039 to purchase the diffractometer.

Supplementary Material Available: Tables of final atomic parameters, anisotropic thermal parameters, and hydrogen parameters (4 pages); tables of structure factors (7 pages). Ordering information is given on any current masthead page.

Manzamine A, a Novel Antitumor Alkaloid from a Sponge

Ryuichi Sakai and Tatsuo Higa*

Harbor Branch Foundation-SeaPharm Research Laboratories, Fort Pierce, Florida 33450
Department of Marine Sciences, University of the Ryukyus Senbaru 1, Nishihara, Okinawa 903-01, Japan

Charles W. Jefford* and Gërald Bernardinelli

Department of Organic Chemistry and Laboratory of Crystallography, University of Geneva 1211 Geneva 4, Switzerland Received May 30, 1986

In our quest for antitumor activity in marine organisms occurring in Okinawan waters, we discovered a sponge ${ }^{1,2}$ which gave an extract inhibiting the growth of P388 mouse leukemia cells. Subsequent purification afforded a compound having an IC_{50} of $0.07 \mu \mathrm{~g} / \mathrm{mL}$, which proved to be a novel alkaloid. We now describe the isolation of manzamine A hydrochloride (1) and the determination of its absolute configuration by X-ray.

A sample (735 g , wet weight) of the sponge, collected off Manzamo, Okinawa, in April 1985, was steeped in acetone. Evaporation gave an aqueous suspension which on extraction with ethyl acetate furnished an oil (13.0 g). A portion (10.7 g) was chromatographed over silica gel ${ }^{3}$ by eluting with n-heptane-ethyl acetate-isopropyl alcohol ($5: 10: 1$). The biologically active fraction was purified over silica gel by successive elution with chloroform and acetone. The acetone eluate gave manzamine A hydrochloride ($1,100 \mathrm{mg}$) as colorless crystals after recrystallization from methanol: $\mathrm{mp}>240^{\circ} \mathrm{C} \mathrm{dec},[\alpha]^{20}+50^{\circ}\left(c 0.28, \mathrm{CHCl}_{3}\right)$.

The molecular formula of the free base of 1 was deduced as $\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}$ from HREIMS ($m / z 548.3510, \Delta 0.5 \mathrm{mmu}$) and by LRFABMS ($\mathrm{M}^{+}+1$ at $m / z 549$). ${ }^{4}$ The ${ }^{13} \mathrm{C}$ NMR spectrum ${ }^{4}$ showed that all 36 carbons were different ($17 \mathrm{sp}^{2}$ - and $19 \mathrm{sp}^{3}$ hybridized atoms). The UV spectral data [$\mathrm{MeOH} \lambda_{\max } 219$ (ϵ

[^3]

Figure 1. Perspective drawing of the absolute configuration of manzamine A hydrochloride (1). Nitrogen atoms are indicated by hatched spheres.

Figure 2. Numbering of the atoms of 1.
22900), 236 ($\epsilon 18600$), 280 ($\epsilon 10800$), 290 sh ($\epsilon 9800$), 346 (ϵ $5300), 357 \mathrm{~nm}(\epsilon 5600)]$ were characteristic of the β-carboline chromophore. ${ }^{5.6}$

The presence of two di- and one trisubstituted double bonds was revealed by the six olefinic carbon NMR signals and the splitting of the contiguous olefinic proton signals. However, these data only account for 12 of the required 17 sites of unsaturation. Consequently, besides the β-carboline ring, manzamine A must possess five rings containing two nitrogen atoms, as well as a single tertiary hydroxy group (IR, $1065 \mathrm{~cm}^{-1}$).

As such complexity rendered conventional methods for structure determination impractical, a crystal of 1 was submitted to X-ray. ${ }^{7}$ The resulting structure, shown in its absolute configuration, is unusual (Figure 1). Apart from the β-carboline substituent, ${ }^{6.9}$ the molecule comprises a complicated array of $5-, 6-, 8-$, and 13 -membered rings (Figure 2). The piperidine and cyclohexene rings adopt chair and boat conformations, respectively, while the pyrrolidinium ring is an envelope. The conformation of the eight-membered cis-olefinic ring is as an envelope-boat $\mathrm{P}(0-++)^{10}$ with a mirror plane passing through $C(35)$ and $C(31)$. The two six-membered rings bridged by a chain of nine carbon atoms constitute a 13 -membered macrocycle which, unlike odd-membered macrocycles in general, ${ }^{11}$ is perfectly ordered and rigid. Its

[^4]
[^0]: (13) This heuristic criterion for dicarboxylic esters was introduced by \mathbf{A}. von Baeyer, the discoverer of cis,trans isomerism in ring compounds: Baeyer, A. Justus Liebigs Ann. Chem. 1888, 245, 103; 1890, 258, 145; 1892, 269, 145.
 (14) Pocker, Y.; Ellsworth, D. L. J. Am. Chem. Soc. 1977, 99, 2284 and references cited therein.
 (15) $k_{\text {solv }}$ in 80% ethanol at $25^{\circ} \mathrm{C}$: 1 -Methyl-1-cyclobutyl chloride $6.2 \times$ $10^{-7} \mathrm{~s}^{-1}$, 2-methyl-2-adamantyl chloride $6.5 \times 10^{-5} \mathrm{~s}^{-1}$. (a) Brown, H. C.; Borkowski, M. J. Am. Chem. Soc. 1952, 74, 1894. (b) Schleyer, P. v. R.; Harris, M., private communication.
 (16) Commercial dimethyl maleate contained $0.34 \pm 0.03 \%$ fumarate. Fumaric ester content dropped to 0.0037% (i.e., below the analytical limit) after reaction with $12 \mathrm{~mol} \%$ diphenyldiazomethane at $0^{\circ} \mathrm{C}$ and distillation; the percentage is based on a measured competition constant of 36 for fumaric vs. maleic ester. A 0.0037% content of dimethyl fumarate in dimethyl maleate should give rise to $0.011 \% 7$ (negligible), based on a competition constant of 52, determined separately. After the experiment, the fumaric ester content remained below the analytical limit.
 (17) Test was necessary because thiocarbonyl ylides are basic; see: Mloston, G.; Huisgen, R. Telrahedron Letl. 1985, $26,1053$.
 (18) Bihlmaier, W.; Geittner, J.; Huisgen, R.; Reissig, H.-U. Helerocycles 1978, $10,147$.
 (19) Dervan, P. B.; Santilli, D. S. J. Am. Chem. Soc. 1980, 102, 3863. (20) Bartlett, P. D.; Cohen, G. M.; Elliott, S. P.; Hummel, K.; Minns, R. A.; Sharts, C. M.; Fukunaga, J. Y. J. Am. Chem. Soc. 1972, 94, 2899.
 (21) Dervan, P. B.; Uyehara, T.; Santilli, D. S. J. Am. Chem. Soc. 1979, 101, 2069.
 (22) Bartlett, P. D.; Hummel, K.; Elliott, S. P.; Minns, R. A. J. Am. Chem. Soc. 1972, 94, 2898.

[^1]: ${ }^{+}$Department of Chemistry, Northwestern University.
 (1) (a) Brookhart, M.; Green, M. L. H. J. Organomel. Chem. 1983, 250, 395. (b) Calvert. R. B.; Shapley, J. R. J. Am. Chem. Soc. 1978, 100, 7726. (2) (a) Muetterties, E. L. Chem. Soc. Rev. 1982, 11, 283. (b) Bergman, R. G. Science (Washinglon, D.C.) 1984, 223, 902 . (c) Muetterties, E. L.; Rhodin, T. L.; Band, E.; Brucker, C. F.; Pretzer, W. R. Chem. Rev. 1979, 79, 91.

[^2]: (3) (a) Mackenzie, P. B.; Ott, K. C.; Grubbs, R. H. Pure Appl. Chem. 1984, 56, 59. (b) Mackenzie, P. B.; Grubbs, R. H., manuscript in preparation.
 (4) COD represents 1,5 -cyclooctadiene
 (5) The yield was based on relative Cp peak integration.
 (6) ${ }^{1} \mathrm{H}$ NMR (toluene- $d_{8} /$ THF- $d_{8}=3 / 1$; room temperature) $\delta 7.24$ ($\mathrm{s}, 2$ $\left.\mathrm{H}, \mu-\mathrm{CH}_{2}\right), 5.30(\mathrm{~s}, 10 \mathrm{H}, \mathrm{Cp}), 4.13-4.09(\mathrm{~m}, 4 \mathrm{H}, \mathrm{COD}), 2.18-2.08(\mathrm{~m}, 4$ H, COD), 2.02-1.98 (m, $4 \mathrm{H}, \mathrm{COD}$), -3.13 (br, $3 \mathrm{H}, \mu-\mathrm{CH}_{3}$); ${ }^{1} \mathrm{H}$ NMR (-92 $\left.{ }^{\circ} \mathrm{C}\right) \delta 1.28\left(\mathrm{~d}, 2 \mathrm{H}, J=12.8 \mathrm{~Hz}, \mu-\mathrm{CH}_{3}\right),-12.15(\mathrm{t} .1 \mathrm{H}, J=12.8 \mathrm{~Hz}$, μ - CH_{3}); ${ }^{3} \mathrm{C}$ NMR (toluene- $d_{8} /$ THF- $d_{8}=3 / 1$; room temperature) $\delta 185.4$ $\left(\mathrm{dt}, 1 \mathrm{C}, J_{\mathrm{CH}}=129, J_{\mathrm{CRh}}=24 \mathrm{~Hz}, \mu-\mathrm{CH}_{2}\right), 104.7\left(\mathrm{dm}, 10 \mathrm{C}, J_{\mathrm{CH}}=172 \mathrm{~Hz}\right.$, $\mathrm{Cp}), 84.1\left(\mathrm{~d}, 2 \mathrm{C}, J_{\mathrm{CH}}=151 \mathrm{~Hz}, \mathrm{COD}\right), 82.9\left(\mathrm{~d}, 2 \mathrm{C}, J_{\mathrm{CH}}=158 \mathrm{~Hz} . \mathrm{COD}\right)$, $49.7\left(\mathrm{dq}, \mathrm{l} \mathrm{C}, J_{\mathrm{CH}}=114, J_{\mathrm{CRh}}=29 \mathrm{~Hz}, \mu-\mathrm{CH}_{3}\right), 32.4\left(\mathrm{t}, 2 \mathrm{C}, J_{\mathrm{CH}}=126\right.$ $\mathrm{Hz}, \mathrm{COD}), 31.6\left(\mathrm{t}, 2 \mathrm{C}, J_{\mathrm{CH}}=128 \mathrm{~Hz}, \mathrm{COD}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(-92^{\circ} \mathrm{C}\right) \delta 51.1$ (ddt, $1 \mathrm{C},{ }^{b} J_{\mathrm{CH}}=87.7,{ }^{1} J_{\mathrm{CH}}=126.7, J_{\mathrm{CRh}}=29.9 \mathrm{~Hz}, \mu-\mathrm{CH}_{3}$). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{RhTi}: \mathrm{C}, 57.44 ; \mathrm{H}, 6.51$. Found: $\mathrm{C}, 57.36: \mathrm{H}, 6.51$. IR (cm^{-1}, $\mathrm{KBr}) 3030,3018,2999,2959,2924,2874,2868,2820,2460$.

[^3]: (1) Sponges are a rich source of chemically and biologically interesting molecules; see: Scheuer, P. J., Ed. Marine Nalural Producls, Chemical and Biological Perspectives; Academic Press: New York, 1978-1983; Vol. I-V. Faulkner, D. J. Nal. Prod. Rep. 1984, 551-598. Uemura, D.; Takahashi, K.; Yamamoto, T.; Katayama, C.; Tanaka, J.; Okumura, Y.; Hirata, Y. J. Am. Chem. Soc. 1985, 107, 4796-4798.
 (2) The sponge has been identified as Haliclona $s p$.
 (3) Silica gel ($230-400$ mesh; 200 g) was stirred in a solution of hep-tane-ethyl acetate-isopropyl alcohol ($5: 10: 1,400 \mathrm{~mL}$) containing aqueous ammonia (4 mL) and then packed into a column.
 (4) Anal. Caled for $\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O} \cdot \mathrm{HCl}: \mathrm{C}, 73.88 ; \mathrm{H}, 7.75 ; \mathrm{N}, 9.57 ; \mathrm{Cl}, 6.06$. Found: C, $73.80, \mathrm{H}, 7.75 ; \mathrm{N}, 9.44 ; \mathrm{Cl}, 6.11$. LREIMS, $m / z 548$ (4), 530 (100), 438 (19), 408 (66), $379(26), 311$ (55), 296 (27), $253(23), 162$ (46), 138 (27), 98 ($32 \mathrm{rel} \%$). IR (KBr) $3280,3150,3050,3000,2920,2800,2760$, $2630,2560,1617,1555,1488,1448,1418,1385,1370,1315,1270,1230$, 1180, 1142, 1110, 1095, 1065, 1025, 820, 740, 725, $700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 11.76(1 \mathrm{H}$, br s), $10.62(1 \mathrm{H}$, br s $), 8.34(1 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz})$, $8.08(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 7.85(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}), 7.83(1 \mathrm{H}, \mathrm{d}, J=7.9$ $\mathrm{Hz}), 7.52(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}), 6.52(1 \mathrm{H}, \mathrm{s}), 6.29$ $(1 \mathrm{H}, \mathrm{m}), 5.57(2 \mathrm{H}, \mathrm{m}), 5.39(1 \mathrm{H}, \mathrm{t}, J=9.9 \mathrm{~Hz}), 4.94(1 \mathrm{H}, \mathrm{m}), 4.03(1$ $\mathrm{H}, \mathrm{m}), 3.72(1 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}), 3.27(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 143.60$ (s), 142.27 (d), 141.37 (s), 141.18 (s), 137.54 (d), 135.12 (d), 133.25 (s), 132.82 (d), 129.27 (s), 127.89 (d), 126.76 (d), 123.50 (d), 121.13 (s), 120.90 (d), 119.22 (d), 113.76 (d), 112.78 (d), 77.98 (d), 71.25 (s), 70.26 (t), 57.02 (d), $53.32(\mathrm{t}), 53.31(\mathrm{t}), 49.12(\mathrm{t}), 46.91(\mathrm{~s}), 44.65(\mathrm{t}), 41.00(\mathrm{~d}), 39.05(\mathrm{t})$, $33.51(\mathrm{t}), 28.31(\mathrm{t}), 26.36(\mathrm{t}), 26.23(\mathrm{t}), 24.86(\mathrm{t}), 24.45(\mathrm{t}), 24.16(\mathrm{t}), 20.62$ (t).

[^4]: (5) Scott, A. I. Interpretalion of the Ullraviolel Spectra of Nalural Producls; Pergamon Press: New York, 1964; p 176.
 (6) Kobayashi, J.; Harbour, G. C.; Gilmore, J.; Rinehart, K. L., Jr. J. Am. Chem. Soc. 1984, 106, 1526-1528.
 (7) Crystal data for $1\left(\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O} \cdot \mathrm{HCl} ; M=585.2\right)$; orthorhombic; space group $P 2_{2} 2_{1} 2_{1}$; unit cell $a=12.989$ (3) $\AA, b=15.267$ (5) $\AA, c=15.890$ (3) $\AA ; V=3151.0 \AA^{3} ; Z=4, D_{\mathrm{c}}=1.234 \mathrm{~g}^{\cdot} \cdot \mathrm{cm}^{-3}$. The absolute configuration was determined by least-squares refinement of the absolute structure parameter $x^{8}(x=0.01$ (14)). The final R factor, based on 2447 reflections, was 0.046 .
 (8) Bernardinelli, G.; Flack, H. D. Acla Cryslallogr., Secl. A 1985, A41, 500-511.
 (9) Atta-ur-Rahman; Basha, A. Biosynlhesis of Indole Alkaloids; Clarendon Press: Oxford, 1983. Rinehart, K. L., Jr.; Kobayashi, J.; Harbour, G. C.; Hughes, R. G., Jr.; Mizsak, S. A.; Scahill, T. A. J. Am. Chem. Soc. 1984, 106, 1524-1526.
 (10) Hendrickson, J. B. J. Am. Chem. Soc. 1967, 89, 7047-7061.
 (11) Dale, J. J. Chem. Soc. 1963, 93-111. Dale, J. Acla Chem. Scand. 1973, 27, 1115-1129.

